Download The Quest for the Best Graphic Equalizer
The design of graphic equalizers has been investigated for decades, but only recently fitting the magnitude response closely enough to the control points has become possible. This paper reviews the development of graphic equalizer design and discusses how to define the target response. Furthermore, it investigates how to find the hardest target gain settings, the definition of the bandwidth of band filters, the estimation of the interaction between the bands, and how the number of iterations improves the design. The main focus is on a recent design principle for the cascade graphic equalizer. This paper extends the design method for the case of third-octave bands, showing how to choose the parameters to obtain good accuracy. The main advantages of the proposed approach are that it keeps the approximation error below 1 dB using only a single second-order IIR filter section per band, and that its design is fast. The remaining challenge is to simplify the design phase so that sufficient accuracy can be obtained without iterations.
Download A Virtual Tube Delay Effect
A virtual tube delay effect based on the real-time simulation of acoustic wave propagation in a garden hose is presented. The paper describes the acoustic measurements conducted and the analysis of the sound propagation in long narrow tubes. The obtained impulse responses are used to design delay lines and digital filters, which simulate the propagation delay, losses, and reflections from the end of the tube which may be open, closed, or acoustically attenuated. A study on the reflection caused by a finite-length tube is described. The resulting system consists of a digital waveguide model and produces delay effects having a realistic low-pass filtering. A stereo delay effect plugin in P URE DATA1 has been implemented and it is described here.
Download A Low-Latency Quasi-Linear-Phase Octave Graphic Equalizer
This paper proposes a low-latency quasi-linear-phase octave graphic equalizer. The structure is derived from a recent linearphase graphic equalizer based on interpolated finite impulse response (IFIR) filters. The proposed system reduces the total latency of the previous equalizer by implementing a hybrid structure. An infinite impulse response (IIR) shelving filter is used in the structure to implement the first band of the equalizer, whereas the rest of the band filters are realized with the linear-phase FIR structure. The introduction of the IIR filter causes a nonlinear phase response in the low frequencies, but the total latency is reduced by 50% in comparison to the linear-phase equalizer. The proposed graphic equalizer is useful in real-time audio processing, where only little latency is tolerated.